Approach to Thalassemia: Part 1
These slides are not comprehensive and are meant to use as a visual aid for specific topics within these thalassemia podcasts.
Case 1

You are in a medical genetics clinic meeting Tahir and Nafia. They are both 26 years old and immigrated from Turkey in their childhoods.

They are referred to you because they are planning on having their first child and Nafia has heard thalassemia is present in her family.

They deny any past medical history.
Hemoglobin Molecule

<table>
<thead>
<tr>
<th>Tetramers</th>
<th>Hemoglobin Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha \alpha \beta \beta)</td>
<td>Hb A</td>
</tr>
<tr>
<td>(\alpha \alpha \gamma \gamma)</td>
<td>Hb F</td>
</tr>
<tr>
<td>(\alpha \alpha \delta \delta)</td>
<td>Hb A(_2)</td>
</tr>
</tbody>
</table>
Globin chain production

Globin Chain Synthesis (%)

Months Post-Conception

Symbol Legend

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>ε</td>
<td>Epsilon</td>
</tr>
</tbody>
</table>
Hemoglobinopathy

• Inherited disorders affecting quantitative and/or qualitative globin chain production

Nomenclature

• Silent carrier
• Thalassemia trait
• Thalassemia disease
 → Non-transfusion dependent thalassemia
 → Transfusion dependent thalassemia
Alpha-thalassemia

Chromosome 16

Clinical Features

<table>
<thead>
<tr>
<th>Symptoms (non-specific)</th>
<th>Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fatigue</td>
<td>• Failure to thrive</td>
</tr>
<tr>
<td>• Dyspnea</td>
<td>• Jaundice</td>
</tr>
<tr>
<td>• Irritability</td>
<td>• Pallor</td>
</tr>
<tr>
<td></td>
<td>• Hepatosplenomegaly</td>
</tr>
<tr>
<td></td>
<td>• Bone deformities (late findings): skull bossing (prominent forehead), maxilla, flat nasal bridge, long bone deformities</td>
</tr>
</tbody>
</table>
Investigations

CBC
• Menzter Index: MCV/RBC
 >13 suggests iron deficiency anemia
 <13 suggests thalassemia

Peripheral blood smear

Fe Studies

Hemoglobin investigations
- Usually normal in alpha-thalassemia

Genetic testing

A peripheral blood film showing target cells (T), teardrop cells (↑) and a variation of red blood cell shapes (poikilocytosis) and sizes (anisocytosis).

Lab Investigations

<table>
<thead>
<tr>
<th>Lab Parameter</th>
<th>Nafia</th>
<th>Tahir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/L)</td>
<td>108</td>
<td>140</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>Peripheral Blood Smear</td>
<td>Hypochromic, microcytic red cells Target cells</td>
<td>-</td>
</tr>
</tbody>
</table>
Case 1 continued

Genetic Testing

Nafia’s Genotype: $\alpha \alpha / - -$

Tahir’s Genotype: $\alpha \alpha / \alpha -$

Possible Genotypes for Their Child

<table>
<thead>
<tr>
<th>Inherited Chromosomes</th>
<th>$\alpha \alpha$</th>
<th>- -</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha \alpha$</td>
<td>$\alpha \alpha / \alpha \alpha$</td>
<td>$\alpha \alpha / - -$</td>
</tr>
<tr>
<td>$\alpha -$</td>
<td>$\alpha - / \alpha \alpha$</td>
<td>$\alpha - / - -$</td>
</tr>
</tbody>
</table>
Approach to Thalassemia: Part 2
These slides are not comprehensive and are meant to use as a visual aid for specific topics within these thalassemia podcasts.
Case 2

You meet Kal in the pediatric emergency room.

ID: He is a 6 month old male who was born at 39 weeks via an elective C-section. The pregnancy and birth were uncomplicated.

HPI: increasingly irritable with difficulty feeding recently. He has been gaining weight and his growth curves have been normal but he is smaller than his two siblings. He drinks breastmilk and has just started trying cereals. His vaccinations are up to date and there has been no travel.
Case 2

Physical Exam

Vitals
BP 75/45, HR 150, RR 30, SpO$_2$ 95% RA, Temp 37.8°C

General appearance: alert, slightly pale
Cardiovascular: systolic murmur and hyperdynamic precordium
Respiratory: unremarkable
Abdominal: soft, non-tender and distended with mild splenomegaly
Case 2

Lab Investigations

<table>
<thead>
<tr>
<th>Lab Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/L)</td>
<td>60</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>50</td>
</tr>
<tr>
<td>Peripheral Blood Smear</td>
<td>hypochromic, microcytic red blood cells anisopoikilocytosis with target cells</td>
</tr>
</tbody>
</table>
Beta-thalassemia

Chromosome 11

Clinical Features

Symptoms (non-specific)
- Fatigue
- Dyspnea
- Irritability

Signs
- Failure to thrive
- Pallor
- Hepatosplenomegaly
- Bone deformities (late findings): skull bossing (prominent forehead), maxilla, flat nasal bridge, long bone deformities
Investigations

CBC
• Menzter Index: MCV/RBC
>13 suggests iron deficiency anemia
<13 suggests thalassemia

Peripheral blood smear

Fe Studies

Hemoglobin investigations

↓ Hb A (or absent)
↑ Hb F, Hb A₂

Genetic testing

A peripheral blood film showing target cells (T), teardrop cells (↑) and a variation of red blood cell shapes (poikilocytosis) and sizes (anisocytosis).

Case 2 continued

Kal was transfused 15mL/kg of packed red cells while you were interpreting his findings.

* * *

Two years later you meet him again as a pediatrics resident and find out he was eventually diagnosed with transfusion dependent beta-thalassemia.
Thalassemia Phenotypes

Transfusion dependent thalassemia (TDT): requires life long red cell transfusions to sustain life

Non-transfusion dependent thalassemia (NTDT): may have episodes requiring red cell transfusions but patients do not require chronic transfusions to sustain life
TDT Treatment

Transfusions
Iron Chelation
Hematopoietic Stem Cell Transplant

Long-Term Monitoring for Complications includes (not a comprehensive list):
- Hepatic and cardiac MRI for iron overload
- ECHO for cardiomyopathy
- etc.
Take Home Points

1) Keep thalassemia on the differential for a microcytic anemia
2) Thalassemia presentations can be variable; history includes ethnicity and parental consanguinity
3) Physical exam findings can be non-specific including: dyspnea, irritability and pallor
4) Important investigations and findings for the work-up of thalassemia includes:
 • CBC: low MCV, high RBCs, with or without decreased hemoglobin in trait
 • CBC: low MCV and variable Hb in disease depending on its severity.
 • Peripheral blood smear: hypochromic, microcytic, poikilocytosis with target cells +/- nucleated red blood cells
 • Hemoglobinopathy investigations Genetic testing for beta or alpha globin genes
5) Thalassemia disease is sub-categorized into TDT and NTDT
6) Management for TDT patients requires lifelong transfusions and iron chelation to prevent severe consequences of iron overload.
References

